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The recently proposed method to determine the hard body distribution function on the ba-
sis of values of the residual chemical potentials of a pair of hard molecules and that of the
corresponding combined body is applied to describe behavior of the inhomogeneous sys-
tems of pure heteronuclear hard dumbbells or a mixture of heteronuclear dumbbells with
hard spheres near a hard wall. Two variants of the main orientation of the dumbbells – i.e.
the perpendicular orientation with respect to the hard planar wall – are studied and several
values of the packing fraction are considered. The used simple method yields a fair predic-
tion of the slices of the distribution function or average correlation function for the
heteronuclear dumbbell (composed of two hard spheres with rather different diameters
(σ2/σ1 = 0.5) and site–site separation (l/σ1 = 0.625)) near a wall; in the case of mixtures of
hard spheres and hard heteronuclear dumbbells the hard sphere diameter σhs = σ1.
Keywords: Statistical geometry; Residual chemical potential; Inhomogeneous system; Hard
body; Heteronuclear dumbbell; Enlarged hard dumbbell; Hard sphere–hard dumbbell mix-
ture; Thermodynamics; Local density approximation; Density functional theory.

Description of the structure of inhomogeneous hard body (HB) systems
plays an important role in understanding adsorption, catalysis, behavior of
fluids in nanotubes or behavior of biochemical systems. A fair amount of
simulation results for different types of inhomogeneous systems formed by
hard spheres (HSs) or non-spherical hard bodies near a hard planar wall, in
a slot or in a spherical pore can be found in the literature. Theoretical stud-
ies employ mainly the solution of the Ornstein–Zernike integral equation1,2

or density functional theory (DFT), cf. refs3–5 and references given therein.
Both the approaches have proved to predict fairly well the distance depend-
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ence of the radial distribution function or HB density profile in both the
homogeneous and inhomogeneous systems, DFT being at present more of-
ten applied. However, evaluation of distribution functions within these
methods is not simple and some input data, determined from the equation
of state for the bulk phase, are necessary.

Recently we followed in series of papers6–10 an alternative approach
which makes it possible to determine the background correlation function,
Y, Y(x) = exp[u(x)/kT]g(x) (where u and g denote the intermolecular pair po-
tential and radial distribution function, respectively, x is distance and T is
temperature) in terms of the residual chemical potentials, ∆µ, of a pair
(triplet ...) of the considered HBs and that of the combined HB originated
from overlapping of the considered two (three etc.) particles. The residual
chemical potentials of HBs are given in terms of the geometric quantities
(functionals) such as the HB volume, surface area, mean radius (mean cur-
vature integral divided by 4π) and others. Thus, this alternative method has
a pronouncedly geometric trait; due to this character the method is very
simple and straightforward. However, one serious problem occurs with
application of this method, namely determination of the geometric func-
tionals of the non-convex combined HB (e.g those of a hard dumbbell in
the case of HSs systems, etc.).

In ref.6 we studied behavior of systems of HSs; the geometric functionals
of the combined body, i.e. hard dumbbell were determined as those of the
spherocylinder (SC) enveloping the given dumbbell. This approximation
appeared to yield precise prediction of the background correlation function
(cavity correlation function) for the reduced center-to-center distances x ∈
(0,1.5), i.e. the direct correlation function in the whole region and part of
the distribution function close to the contact distance. However, for dis-
tances of approximately x = 2 the nonphysical values were found. Another
problem encountered in the case of mixtures of spheres differing consider-
ably in their diameters. To improve the determination of the geometric
quantities of the combined bodies in such cases we introduced in refs7–10

a model of the “enlarged hard body” (e.g. enlarged hard dumbbell).
In this paper we apply our method to determine distribution/average

correlation function of the heteronuclear hard dumbbell (HHD) in the
inhomogeneous HHD–hard wall system. We tackle the problem of applica-
tion of the method to this system in ref.10 where a oversimplified geometric
view was used. Here we try to improve our consideration/approximation.

In this work we firstly present the general basis of the method and sub-
sequently we derive expressions for the necessary geometric quantities of
the HHD and combined bodies. Finally we evaluate the slices through the
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distribution functions and average correlation functions of the pure HHD +
hard wall and mixture (HS + HHD) near hard wall.

THEORY

The starting point of the method is the relation (cf. ref.11) between the
background (cavity) correlation function, Y, and the residual chemical po-
tentials, ∆µ, of the pair of considered molecules – hard body (HB) – and the
combined hard body (CB) (given by an overlap of the HBs),

ln / / /Y kT kT kTij i j= + −∆ ∆ ∆µ µ µHB HB CB (1)

where k and T denote Boltzmann constant and temperature, respectively.
As the inhomogeneous systems of HB near a hard wall are related to the

behavior of HB mixtures in the colloidal limit, we started from the self-
consistent expression12 for ∆As, where As stands for the Helmholtz energy
of a solution, such as

∆A NkT v v v v v vs s s/ ln( ) / ( ) [ ( / / )] / (= − − + − + − −1 3 1 3 2 5 12 12α β )2 . (2)

Here v stands for the packing fraction v = ρ∑xjVj of the HB mixture and αs =
rs/3ρv, βs = qs2/9ρv2 are two non-sphericity parameters defined in terms of
the geometric quantities – the HB volume, V, surface area, S, and the mean
curvature integral, divided by 4π, R; for the mixture it holds r = ρ∑xjRj, s =
ρ∑xjSj, q = ρ∑xjQj, where ρ is the number density and xj the mole fraction.
The equation of state corresponding to (2) reads as

PV NkT v v v v v vs s s/ / ( ) / ( ) ( / / ) / (= − + − + − +1 1 3 1 3 5 4 5 12 12 2 2α β − v)2 . (3)

The compressibility factor of pure HSs from this equation at the packing
fraction η = 0.5 equals 12.958 in comparison with MC value 13; Eq. (3)
yields also a fair description of systems of hard dumbbells and other fused
HS bodies.

From Eq. (2), one can find the following relation for the residual chemi-
cal potential

∆µ ρi i i ikT v sR rS V v/ ln( ) ( ) / ( )= − − + + + − +1 1

+ + − + − +[( )( / / ) ] / [ ( ) ]s Q qsS v rsV vi i i
2 22 3 2 3 9 1

+ − −qs v V vi
2 37 2 27 1( / ) / [ ( ) ] . (4)
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Next, we introduce the reduced quantities Vi* = Vi/∑xjVj, Si* = Si/∑xjSj,
Ri* = Ri/∑xjRj and Qi* = Qi/∑xjQj. Then the above equation can be rearranged
to the form

∆µ αi skT v v v/ ln( ) [ / ( )][= − − + −1 1 3 (Ri* + Si*) + Vi*] + [ / ( )]v v1 2− ×

× [ (β s Qi* + 2Si*)( / / )3 2 3 3− +v sα Vi*] + [ / ( )] ( / / )v v v s1 7 3 63− − β Vi*. (5)

If we define differences of the reduced geometric quantities as

∆X* = Xi* + Xj* – XCHB* = (Xi + Xj – XCHB)/ΣxjXj

the background correlation function reads as

ln ln( ) [ / ( )][ ( * *) *] [ / ( )]Y v v v R S V v vs= − − + − + + + −1 1 3 1α ∆ ∆ ∆ 2 ×

× [ (β s ∆Q* + 2∆S*)( / / )3 2 3 3− +v sα ∆V*] + [ / ( )] ( / / )v v v s1 7 3 63− − β V*. (6)

From the last equation it is obvious that knowledge of the differences in
volumes and other geometric quantities of the pair of HBs and of the com-
bined body are sufficient to determine Y and consequently the pair correla-
tion or distribution functions (c or g).

Geometric Properties of the Enlarged Heteronuclear Dumbbell

Geometric properties of a hard sphere – its volume, V, surface area, S, and
the mean curvature integral divided by 4π, R, are simple functionals of ra-
dius, rs, i.e. Vs = 4 33πrs / , S rs s= 4 2π and Rs = rs. The reduced quantities read as
Rs* = Rs*/(σs/2), etc. With the choice σs = σA = σ = 2r1 all the reduced geo-
metric quantities of HS are equal to one.

For the dumbbell (and other fused HS models), we introduce enlarged
hard dumbbell (EHD) – a body “perceived” by the other molecules of the
studied system; EHD originates when a probe of the radius rp is rolled over a
hard dumbbell. In the case of homonuclear dumbbell (HD) σ1 ≡ σ2 = σ and
rp = r1. If the difference of r1 and r2 in the heteronuclear hard dumbbell is
small, then we can take rp = (r1 + r2)/2; however, in our case we have to use
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a weighted average, an analogue of the prescription applied in the case of
the HS mixtures10

r r rp j j= ∑ ∑2

1

2

1

2

/ = 0.9 .

Next, we determine two angles θ1 and θ2 which determine two saddle
parts, into which (together with convex ones) the EHD can be divided in the
process of evaluation of the geometric quantities according to Connolly13,14

(Fig. 1). Angles θ1 and θ2 follow from the relation sin θi = li/ri and l1 + l2 = l.
For the convex parts of the EHD surface area, Sc, it holds true

S r rc = + + +2 1 11
2

1 2
2

2π θ θ[ ( sin ) ( sin )] (7)

whereas the saddle parts Ssd contribute by

S r X r X rsd p ij p ij p= − + −







∫ ∫2
0 0

1 2

π γ γ γ γ
θ θ

( cos ) ( cos )d d




=

= + + − +2 1 1 2 1 1 2π θ θ θ θ θr r rp p p[( )( )cos (sin sin )] (8)

(Xij stands for the height of the triangle). The reduced EHD surface area,
S* = S/(πσ2) (with respect to the diameter of hard sphere A) reads as
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FIG. 1
Geometry of the heteronuclear hard dumbbell. Black line, HHD composed of sites with diame-
ters σ1, σ2, site separation L; red line, probe sphere with radius rp*, and characteristic angles of
the saddle parts θ1, θ2



S* = (Sc + Ssd)/πσ2 =

= + + + − + +1
2

1 2
1

2
2

2
1 2[( ) (sin sin ) * (sin sin )p p rpθ θ θ θ

+ + +r rp p* ( *)( )cos ]1 1 2 1θ θ θ (9)

where p = r2/r1 and rp* = rp/r1. Taking derivatives of (7) and (8) with respect
to r1, r2 and rp, one obtains the reduced mean radius, R* = R/(σ/2)

R p p rp* [( ) (sin sin ) * (sin sin )= + + + + + −1
2

1 1 2 1 2θ θ θ θ

− + +( *)( )cos / ]1 21 2 1rp θ θ θ . (10)

Volumes of the convex and saddle parts follow from expressions

V rc i i i i= + +∑2 3 1 23 2π θ θ θ/ ( sin cos sin / )

and

V r X rsd p ij p

i

= −∫∑2 2 2

0

π γ γ γ
θ

( cos ) sin d .

The reduced volume, V* = (Vc + Vsd)/(πσ3/6) is

V p* [( sin cos sin / ) ( sin cos sin= + + + + +1
2

1 2 11
2

1 1
3

2
2

2θ θ θ θ θ θ2 2/ )] +

+ + + + −3
4

1 11 1 1 2r r r rp p p p* ( *)cos [( *)cos sin sin ) * (cθ θ ( θ θ os cos )]θ θ1 2+ +

+ + + + −1
4

2 23 2
1 1

2
2 2 1 2rp * [(cos sin cos sin ) sin sin ]θ θ θ θ θ θ

− + +3
4

12
1 1 2r rp p* ( *)cos ( )θ θ θ . (11)

The reduced quantity Q* (for which holds true the inequality S* < Q* <
R*2) was in this study approximated by Eq. (12)
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Q* = S*(R*2/S*)δ (12)

found from the analysis of the third virial coefficients with δ = 1/2, cf. ref.15.
Then the non-sphericity parameters of pure HDs result from the values of
the reduced quantities, i.e. α = R*S*/V* and β = Q*S*2/V*2.

The hard planar wall can be interpreted as a part of a hard sphere with
the diameter tending to infinity. The geometric properties of hard planar
wall, Rw, Sw, Vw, Qw are consequently defined as those of a special planar
circle with zero values of Rw and Vw and with surface area of a circle (its
normal coincides with that of the hard wall) i.e. Sw = 4 2πrw ; rw = (r + rp) cos θ.
(In the case of HD in its parallel orientation to a planar body an overlap of
several circles is considered.)

Geometric Quantities of the Combined Bodies

As discussed previously, the background correlation function, Y, can be
evaluated on the basis of ∆R*, ∆S*, ∆Q*, ∆V*, etc. Thus, geometric quantities
of the combined body RCB*, SCB*, etc. have to be determined. For the pure
HHD–wall system we need in principle the geometric quantities of CBs for
different orientations of HHD with respect to the wall plane. Here we will
consider only the perpendicular orientation, with larger or smaller site
closer to the wall. In the case of the perpendicular orientation of HHD and
site A (with diameter σA = 1) closer to the wall, we can calculate SCB as sur-
face area of HHD minus convex part of site A for angles (0,θ) plus saddle
part for angles (0,π/2 + θ) where θ = arcsin [(z – rp)/(1 + rp)] and z is distance
of the site A from the wall (Fig. 2a). Thus,

RCB* = R r rp p* ( sin ) / * ( sin ) / ( *)( / )cos /− − + + − + +1 2 1 2 1 2 4θ θ π θ θ (13)

SCB* = S r r rp p p* ( sin ) / * ( sin ) / * ( *)( / )cos− − + + + + +1 2 1 2 1 22θ θ π θ θ / 2 (14)

VCB* = V * {( sin cos sin / )− − − +1 22θ θ θ

+ + + + −3 1 1 1r r rp p p*( *)cos [( *)cos ( sin )θ θ θ

− + + + −r rp p* cos sin ]/ * (cos sin / sin )θ θ θ θ θ2 2 13 2

− + +3 1 2 2 22r rp p* ( *)cos ( / ) / } /θ π θ . (15)
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These expressions are valid for the wall–site distances, z, where cos θ ≤
rp/(1 + rp). For larger values of z we have to consider – instead of integrals
from 0 to θ – integrals from φ to θ, where φ is given by the crossing of the
probe sphere with the wall–site A line.

The differences in the geometric functionals, ∆R*, ∆S*, ∆Q* and ∆V* pos-
sess the following form

∆R* = 1 – RCB*/R* (16)

∆S* = 1 + [cos θ (1+rp*)/2]2/S*– SCB*/S* (17)

∆V* = 1 – VCB*/V* (18)

∆Q* = 1 – QCB*/Q* . (19)

Substitution of the above expressions into (6) (with v = y, y being the
packing fraction of pure HHDs) one can evaluate the pair wall–site correla-
tion function for the perpendicular HHD orientation, with the large site A
closer to the wall. When considering the reverse orientation (smaller site B
closer to the plane) we have to realize that due to relation r2 << rp the probe
sphere contacts firstly (for small distances z) site A and only for z > rp/2
site B (with the smaller radius r2). In the latter case
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FIG. 2
a Geometry of heteronuclear hard dumbbell (in perpendicular orientation, larger site A closer
to the wall). Red circle, probe sphere; θ, characteristic angle; z, distance of hard dumbbell from
the hard wall (w). b The same as in Fig. 2a but for smaller site B closer to the wall



RCB* = R p r p rp p* ( sin )/ * ( sin )/ ( *)( / )cos /− − + + − + +1 2 1 2 2 4θ θ π θ θ (20)

SCB* = S p r r p rp p p* ( sin )/ * ( sin )/ *( *)( / )co− − + + + + +2 21 2 1 2 2θ θ π θ s /θ 2 (21)

VCB* = V p* { ( sin cos sin / )− − + +3 21 2θ θ θ

+ + + + −3 1r p r p rp p p*( * *)cos [( *)cos ( sin )θ θ θ

− + + + −r rp p* cos sin ]/ * (cos sin / sin )θ θ θ θ θ2 2 13 2

− + +3 2 2 22r p rp p* ( * *)cos ( / )/ }/θ π θ . (22)

The average wall–site A correlation function g can be obtained from gWA
by considering all the acceptable orientations of site B with respect to the
normal of the wall versus all possible HHD orientations.

Approximately Equimolar Hard Sphere–Heteronuclear Hard Dumbbell
Mixtures Near a Hard Wall

Solutions of hard spheres with heteronuclear hard dumbbells represent the
reference system for some realistic mixtures. In the literature one can find
results of the MC studies of HHD mixtures performed by Archer et al.16,
Gulati and Hall17 or Nezbeda et al.18. The paper by Nezbeda et al. brings
distribution functions of HS and HHD near the planar wall for several con-
centrations of HS and several densities. Here we will consider approxi-
mately equimolar mixture at the highest density v = 0.407 and non-
equimolar mixtures with mole fractions of HS equal to 0.271 and 0.725 at
v = 0.407 or 0.410.

In our previous paper we studied pair distribution functions in ternary HS
systems and found that a fair description of the effect of the third compo-
nent on the dependence of gij on distance zij consists in proper choice of
the radius (diameter) of the probe sphere. The best results were obtained for
the weighted average of σp = ∑xi iσ 2 /∑xi iσ . As in ref.18 the HS diameter is
equal to the diameter of the larger site (σA = 1) and σp of pure HHD equals
0.9, the probe diameter in the equimolar mixtures is σp = 0.95. This value
was used here for evaluation of the wall–site A distribution functions. Be-
side this, values of the non-sphericity parameters αs and βs change slightly
to smaller values with the increasing concentration of HS.
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RESULTS

Our theoretical approach was applied to determine distribution functions
of the HHD (σ1 = 1, σ2 = 0.5, site separation L = 0.625) near the planar wall;
we calculate gWA or gWB for HHD in direction of the normal of the plane,
with the larger site A or smaller site B closer to the wall. The average corre-
lation function gWI follows from gWI by considering the ratio of all the ac-
ceptable orientation to all of them (∫ φ

π γ/ sin2 d / ∫ −π
π γ/

/ sin2
2 d ). Theoretical

dependence of g (dashed) and g (full line) on the reduced distance of the
site center from the wall, z/σ, are presented in Figs 3 and 4 and compared
with the MC data18. These are extracted from the relatively small figures in
ref.18 with approximate error 0.1 (max ≈ 0.25 for z ≈ zmin). In Fig. 3, theoret-
ical dependence of g vs z* is compared with simulation results for packing
fraction y = 0.308. We take value σp = 0.9 (obtained as a weighted average
from σ1 and σ2). A fair agreement of the calculated curve with MC data was
found. The theoretical curve indicates also a cusp at distance z* ≈ 0.875. In
Fig. 4, we compare the average correlation function, gWB, for the same pack-
ing fraction and σp as above. Agreement with MC data in this case is only
qualitative; slightly better agreement can be obtained for σp = 0.8. This indi-
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FIG. 3
Average correlation function (W–A) for the perpendicular orientation and larger site A closer
to the wall, gWA (full line) and radial distribution function for perpendicular orientation of
HHD (dashed line); �, MC data for y = 0.306
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FIG. 4
The same as in Fig. 3 but for the smaller site B closer to the wall, gWB

FIG. 5
Average correlation HHD/wall function g (larger site A closer to the wall) at packing fraction v
= 0.407 for approximately equimolar mixture of HS + HHD near a wall (full line) and radial
distribution function for the perpendicular orientation of HHD (dashed line)



cates the fact that in the case of gWB the evaluation of σp is more compli-
cated than in the case of gWA: for small values of z/σ the contact of two
B sites can be realized (it contributes by a large value to g), whereas the
averaged value, σp, does not allow to consider such a contact at all. We did
not discuss parallel orientation of HHD/wall, as we are not aware of any
MC study for this orientation. Moreover, projection of the parallel HHD on
the plain, important for the determination of ∆R, etc.) differs only slightly
from that for single site A.

Next, we consider the HS + HHD mixtures near a wall. Because of the spe-
cial choice of the HS diameter, σs = σA, we can simply modify the way of
evaluation of Rref, Sref, etc., and ∆R*, ∆S*, ∆Q* and ∆V* discussed above;
the effect of an addition of HSs consists mainly in change of the probe di-
ameter. For the approximately equimolar mixture the accepted value was
σp = 0.95.

Radial distribution function as well as average correlation function in the
equimolar mixture for HHD/wall, gWA, at the packing fraction v = 0.407 as
obtained from the above expressions for a mixture, is presented in Fig. 5.
Theoretical dependence is compared with the MC data and a fair agreement
was found. In Fig. 6, the average correlation functions are depicted for the
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FIG. 6
The same as in Fig. 5 but for non-equimolar mixtures of HS + HHD at v = 0.407, x1 = 0.271 and
v = 0.410, x1 = 0.725



same packing fraction and two values of the mole fraction (of HS), x1 =
0.271 and 0.725. One can see that also the average correlation function gWA
for non-equimolar concentrations compares well with the respective simu-
lation data (presented in ref.18 for v = 0.407).

From these figures a fair agreement is apparent. Comparison of Figs 5 and
3 indicates the fact that – due to a small difference of σp’s for pure HHD and
mixture – both the distribution functions are very similar.

The wall–site B distribution function of the mixture was not determined,
because of problems with application of the “mixing rule” for σp needed in
the initial part of the gWB curve.

CONCLUSION

The study of the heteronuclear hard dumbbell represents a continuation of
our systematic application of the theoretical method, proposed by us, to de-
termine distribution functions and/or density profiles of homogeneous and
heteronuclear hard body–wall systems on the basis of the residual chemical
potentials of the considered pair of bodies and the respective combined
body. The study of the heteronuclear hard dumbbell with considerably dif-
ferent sites indicates new questions, not present in the case of homonuclear
dumbbells; simple approximations were used and some possible ways of
improvements are indicated.

The present method leads to very simple relations even in the case of
more complex systems – still in terms of differences in the geometric quan-
tities, such as volume, surface area or mean radius of the studied molecules,
inclusive those for a hard plane. The introduction of the enlarged fused
hard sphere molecules (such as enlarged dumbbells) has improved the
physical background of evaluation of the considered geometric quantities
and enabled an extension of application of the method to more complex
systems, such as hard bodies in a pore, hard bodies near different types of
walls, dumbbells with different site separations (not only with tangent
sites), triatomics and different heteronuclear fused hard sphere bodies. Be-
sides of simplicity, also the fact that no input results for the bulk phase is
expected, belongs to advantages of the method. The main disadvantage of
the method consists in the limited range of distances z/σ ∈ (1,2), where the
method yields distribution functions. The upper limit of the range – in ab-
sence of understanding to the physical nature of the geometric quantity, Q
– is due to the used approximation (for non-convex hard bodies). However,
it is fair to say, that the available range is the most interesting one, e.g. for
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characterization of adsorption or molecule structures in nanotubes and
biomolecules.
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